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Received 16 May 2007 axisymmetric rigid body for the arbitrary case of angular velocity boundary conditions is studied. A square

integrable functional, which is consistent with the symmetry of the rotating body and characterizes the
power consumption, is chosen as the criterion. The principal moment of the applied external forces serves
as the control and the time of termination of a manoeuvre can be both specified as well as free. In the case
of a specified termination time, it is shown that the solution (control) belongs to the class of infinitely-
differentiable functions of time. The reasoning is based on the use of the singularities of the structure of
the differential equations and the possibility of reducing the initial problem to two successive variational
problems. The existence of a solution of the first of these problems in the class of square integrable
functions is proved using the Cauchy-Bunyakovskii inequality. The second problem reduces to a search
for the minimum of a functional which is weakly lower semi-continuous on a weakly compact set and the
existence of its solution in the same class of functions follows from the Weierstrass theorem. The required
conclusion concerning the smoothness of the solution of the optimal control problem is obtained from
the necessary conditions of Pontryagin’s maximum principle. In the case of a free termination time, one
of the minimizing sequence can be constructed and it can be shown that, in the general case, there is no
solution in the class of measurable controls.

© 2008 Elsevier Ltd. All rights reserved.

The problem of the optimal control of the motion of an axisymmetric body under the assumption that a piecewise-continuous solution
exists was considered in Ref. 1.

Because of the extreme non-linearity of the system, there are few results relating to the problem of the existence of solutions and the
correctness of the determination of the corresponding class of functions for the family of variational problems studied, which also give rise
to the need to introduce of the above mentioned assumption. The correctness of the assumption used concerning the smoothness of the
optimal control is successfully proved and it is successfully strengthened. Moreover, a conclusion, similar to that obtained earlier,? that
there is no solution of the problem with an unspecified termination time, is formulated.

1. Formulation of the problem

We shall study the problem of the optimal control of the spin up/spin down of an axisymmetric rigid body. The principal moment
of the external forces applied to the body is used as the control. The change in the angular velocity vector from the initial value to the
required terminal value in such a way that the manoeuvre corresponds to the least energy consumption is assumed to be the basic task
of the control A square integrable functional, which is consistent with the symmetry of the rotating body, is adopted as the criterion. The
boundary conditions for the angular velocity vector can be arbitrary and the change in the orientation will be ignored. The cases of specified
and free termination times are considered.
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Thus, the optimal control problem!

| wi@+u3(t)+ Cui(1))dt - min , e [0,T]

o] Uy, sy ity
®,;(0) = v, O = Ko,0;+u; (ae), o(T)=w,
®,(0) = v,, @) = -Ko0;+u, (ae.), 0)(T) =w,
®3(0) = v;, ®; = u; (ae.), W3(T) = wy
U= (U, up ), © = (0,0,0;)7, 0= (0,005, W= (w, wyw;)’, C>0 (11)

is studied, where w is the angular velocity vector in projections onto the associated system of coordinates, the axes of which coincide with
the principal central axes of inertia of the body, u is the control vector which is connected to the vector of the principal moment of the
external forces M=(Mj, My, M3)T by the relations

w=IL'M, i=1,23; I =1, K=1-Ll,

and I; >0 are the principal central moments of inertia. Here and henceforth a.e. denotes “almost everywhere with respect to the classical
Lebesgue measure” and, unless otherwise stated, it is borne in mind that t ¢ [0, T].

One of the serious difficulties, which is mostly eliminated by introducing an additional assumption, lies in the indication of the class of
functions in which a solution of the optimal control problem exists and in the strict proof of the fact that a solution of the problem exists.
These questions, as applied to the problem of the rotation of an axisymmetric body, will be discussed later.

Everywhere, apart from in the last section, we shall assume that the termination time T> 0 is specified. We now introduce some notation.
Suppose A is a set of the form

A = {uy, upuz€ Ly: 0(0) = v, @) = Koz, + u,, (ae.), o7 =wy;

®,(0) = 1, @, = —Kw;0, +uy(ae.), 0,(T) = wy; 05(0) = v;, D3 = us(ae.),
03(T) = w3}

J(a): Ly x Ly x Ly — R is a functional of the form

J(u) = [(ui(0) +u(r) + Clus(1)dr

and the integrals are understood in the Lebesgue sense using the classical measure. Henceforth, L, = Ly([0, T]) and, unless otherwise stated,
integration is carried out over the interval [0, T].

Generally speaking, it follows from Euler’s Eq. (1.1) that the functions u; must be only Lebesgue integrable, that is, they belong to the
class L1[(0, T]). However, in order that the functional should take finite values, it is sufficient to restrict the space to L([0, T]), which is what
has been done above.

The existence of a solution of the problem

min J(u)
ue d (1.2)

will therefore be studied.

It will be proved later that problem (1.2) has a solution. It will subsequently be proved that a solution of the initial problem exists in a
narrower class, the class of infinitely-differentiable functions of time C>*([0, T]). In conclusion, it will be shown that, apart from rare cases
of boundary conditions, there are no solutions of the problem with an unspecified time.

2. Subsidiary optimal control problems

Suppose z € AC([0, T]) is an arbitrarily chosen function, absolutely continuous in [0,T ] with boundary conditions z(0) = v3 and z(T) = w3,
and z € L1([0, T]) is its (a.e.) derivative. For the specified function z, we consider the optimal control problem

j(uf(t) + us(1))dt — min

Uy, Uy

®,(0) = v, o =Kzo,+u; (ae), o(T) =

[
=

®,(0)

vy, @ = —Kzo, +u, (ae), @y (T) =w, 1)
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for uq, uy € Ly([0, T]). We introduce the notation
AZ) = {u;, u, € Ly([0, T]):
®,(0) = v,® = Kz, +u (ae.), o, (T) =w;; ®,(0) = v,, W, = -Kzo, +u,(ae.),
@, (T) = wy }

H(uy,u) = [(ui() + u3(r))ar

and write problem (2.1) more compactly as

min  H(u,, u,)
(), u5) € A(2) (2.2)

We will assume that B< SO (2) is the matrix of rotation in a plane, which is the solution of the Cauchy problem

01
-10

B(0) =1, B =Kz B

(2.3)

where I e R2%2 s the identity matrix. In problem (2.1), we change to new variables, which are connected with the old variables by the
relations
® T ® u
3 1 = B 1 , ~l =B
, ®, ) U

Ti| U,

(2.4)

The correctness of the equalities

d’)] = Uy, &2 = 1‘22 (a.e.); H(u,, uz) = H(l}l, ;{z)

is immediately verified.
It is well known that the solution of problem (2.3) can be represented in the form

B(t) = cos@(t) sin@(t)
—sin@(t) cos@(t)

where ¢ is an absolutely continuous function, which is the solution of the Cauchy problem
¢(0) = O(mod2m), ¢ = Kz (ae.)
and is completely determined by specifying the function z. The corresponding solution has the form

o(1) = K [ z(t)dt(mod2m)
{0, 1]

Consequently, the formulae defining the boundary conditions for the new variables have the form

O O) ) _ | i) e Wi _ | cosy —siny || Wi ,X=Kj’z(t)dt

6‘)2(0) V, G)Z(T) {{}2 Sinx cosy W) [0, 7]

Using the substitution of the variables (2.4) in problem (2.1) and taking account of the inequalities for the boundary conditions presented
above, we arrive at the problem
H(u,, uy) = min
uy, i,

®,(0) = v, ® =, (ae.); ®(T)=w;; ,(0) = v,, d = i, (ae.),D(T) = W, (2.5)

Solutions of problems (2.1) and (2.5) exist or do not exist simultaneously since the corresponding variables are related by the equalities
(2.4). We therefore later change to the study of problem (2.5). The basic difference between problems (2.1) and (2.5) lies in the fact that
the initial problem is a problem of the optimal control of a linear non-steady-state system, and problem (2.5), which is obtained after the
change of variables, is an optimal control problem for a steady-state linear system of simpler structure. This property enables us to change
later to the simplest linear-quadratic problem.

In fact, suppose

dA; = {u;e Ly: ®(0) = v, & =u; (ae.)re [0,T],0(T)=w;}, i=12
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We then rewrite problem (2.5) in the form

min H(ity, ity)

uy € s,

i, e A, (2.6)

and since, obviously,
2
inf j(ﬁf(z) +iy(n)de = Y inf jaf(t)dt

u e dd, i=q1tied
uye o, (2.7)

i

then, for problem (2.6) to be solvable, it is sufficient to show that an exact lower bound is attained for each problem on the right-hand side
of equality (2.7).
Hence, we arrive at the following simplest scalar linear-quadratic optimal control problem

minjuz(t)dt
ue D

% = {ue L,: x(0) =a, x =u(ae.), x(T) =b} (2.8)

We will show that a unique solution exists in this problem and we will construct this solution.
In fact, we note that the set D can be written in the equivalent form

9 ={ue L2:J.u(t)dt=b—aEc} 29)

It follows from the Cauchy-Bunyakovskii inequality that
Jutoydr< ([an™ ([ L(nyan"”
Since,
Hu(t)dtl < Jlu(t)ldt
then, from definition (2.9), we obtain the inequality
AT < [ ul(t)dt
which is true for all u € D. Consequently,

AT < inf [u’(0)dt
ue P

We now define the function
wk(t) = T (ae.) (2.10)
Then, obviously, u* € D and, since
j(u*(r))zdt = 7!
we obtain the equality
j(u*(t))zdt = uigfg u(t)dt

It has therefore been proved that a solution of problem (2.8) exists and one of the solutions has the form (2.10).

The solution of problem (2.8) is unique apart from to an equivalent function.

Actually, if a= b, the assertion is obvious and corresponds to a unique null control. Now suppose a # b. We shall reason by contradiction
and assume that, in reality, u*, u** € D are two different solutions (non-coinciding on a set of non-zero measure) of variational problem
(2.8). It can then be concluded that the functions u” and u"", considered as vectors in the linear space L5, are not collinear. Actually, if they
were to be collinear, then the equality

u*(t) = du**(t) (ae.)
would hold for a certain constant d and, therefore, d2 = 1. Consequently, one of the two equalities
u*(1) = u**(1) (ae.), u*(t) = —-u**(t) (ae.)

holds. Since u*, u** € D, it follows from representation (2.9) that, for the case when a # b, the first equality must be satisfied. Consequently,
the solutions are identical almost everywhere with respect to the classical Lebesgue measure and this contradicts the assumption.
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We now arbitrarily choose a real number « and construct the function au” +(1 —a)u" . It follows from formula (2.9) that this function
belongs to the set D, and we thereby obtain a single-parameter family of controls which are permissible in problem (2.8). The equality

Jlow (1) +(1- a)urdr = (o + (1 =a)))r+20(1 —o)s

is obvious, where

r= [r@)’de = [(*0))’dt>0, s = [ur(ur(ndt
Again, using the Cauchy-Bunyakovskii inequality, we obtain
(Ju* (Ous*(r)de)” < [(u* (1)) de [ (1)) dt

It is well known that the Cauchy-Bunyakovskii inequality is satisfied as an equality in and only in the case when the vectors are collinear.
Since the non-collinearity of u” and u™ has been proved earlier, then s2 <72,
The equality

min [u’()dt = min(o’ + (1-0)*)r + 201 - @)s
ue P o

follows from the constructions. From the necessary condition for an extremum of the function on the right-hand side, we obtain
(r-s)2a-1) =0

where & is the point of the unique extremum. Consequently, & = 1/2 and, then,

min [u’(t)dt = (&7 + (1-8)")r+28(1 - @)s = (r+s)2<(r+lsl)2<r
ue P

The strict inequality means thatu” and u”™" are not solutions of problem (2.8). The resulting contradiction proves the required uniqueness
of the solution.

Apart from the proof of the existence and uniqueness of the solution of problem (2.8), the solution of (2.10) was obtained, which enables
as to write the equality

minjuz(r)dt = (a-b)’T"
ued

The result presented can also be proved on the basis of other facts. For example, it is possible to make use of a theorem on the existence
of a unique projection of a point onto a closed convex set in Hilbert space or to use a version of the Weierstrass theorem on the minimum of
aweakly continuous functional on a weakly compact set. It is also possible to refer to the existence theorem for the general linear-quadratic
problem (see Ref. 3, Ch. 16, §16.2).

Hence, the arguments presented above as applied to equality (2.7) lead to the relation

2

2
min [(i; () +iip(N)dt = Y, min [@;(dt = T Y, (W;-v)”
€d, i= ki€ i=1

1R

1
u,€ A,

Using the corresponding formulae for w; and W, we introduce the notation

2
F@) =T" 2 w;— 1),~)2 = T_l[(wlcosx —w,siny — 1)1)2 + (wsiny + w,cosy — v2)2]

i=1 (2.11)
for the functional F : L, — R. The final result now takes the form
min  H(u,, u,) = F(2)
(4, uy) € A(2) (2.12)

3. Reduction of the initial problem to a problem of successive minimization
The arguments presented in this section are based on the following assumption.
Suppose X and Y are arbitrary spaces and G : X x Y — R is a certain functional. In the case of the set
CcXxY

we consider the sets

Pry@ = {xe X:3ye Y, (x,y)e €}, 6(x) = {ye Y:(x,y)e 6}

which have the meaning of a projection and a section of C respectively. The equality

inf G(x,y) = inf inf G(x,y)
(x,y)e € xe Prgy@ ye 6(x) (3.1)
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then holds.
In fact, the inequality
inf G(x,y)< inf inf  G(x,y)
(x,y)e € x€ Pry€ ye 6(x) (3.2)

follows from the definition of the exact lower bound.
Suppose {(xn, yn)} is the minimizing sequence in the problem

inf  G(x,y)
(x,y)e €
that is,
lim G(x,,y,) = inf  G(x,y)
"o (xy)e®

Since @y ¥») € 6, then Yn € 6(x,) and, therefore,

G(x, y,)2 inf G(x,,y)
ye 6(x,)

Now, taking account of the fact that X» € Pr8 onthe right-hand side we take the exact lower bound:

inf G(x,y)2 inf inf G(x,y),
ye €(x,) x€ Prg€ ye €(x)
from which
G(x,y,)2 inf inf  G(x,y)

x€ Pry€ ye €(x)

On taking the limit with respect to n and taking account of the definition of the minimizing sequence, we obtain the inequality

inf G(x,y)= inf inf  G(x,y)
(x,y)e 6 x€Pry€  ye 6(x) (3.3)

What is required then follows from inequalities (3.2) and (3.3).
We now consider the set .4 from Section 1 and put

Prsd = {use Ly : Juj,u, € Ly, (uy, uy, u3) € A}

The representation
Pred = {use L, : 03(0) = v3, 3 = us(ae.), 03(7) = ws} (3.4)
is correct.
Actually, the inclusion
Prysd c{-}
where {-} is the right-hand side of equality (3.4) is obvious by virtue of the definition of the set A. Conversely, we choose an arbitrary
function us from the set {-}. The inverse inclusion, which also proves the required equality, follows from the definition of the set A(z) for

Z= us.
Hence, introducing the notation

2 2 -12 ~1f 2
Jin = [0 + w0+ Clus0)dr, Ty = C us(ndr
and applying equality (3.1) to the initial problem, we arrive at the formulae

. . . . . 2 2
inf  Jy;= inf inf  Jyy== inf [Jy+ inf [0+ u3(0)dr]
(uy, tp, uz) € S uy € Prysd (uy, uy) € sl(us) uy € Pryst (uy, uy) € A(uy)

The second term in the square brackets is identical to the solution of the problem considered in Section 2. Using expression (2.12), we
therefore obtain

inf  Jy3 = inf [J3+ F(us)]
(uy, upy uz)e uy € Pryd (3.5)

The functional F is described by formula (2.11).
Hence, to prove the existence of a solution of the initial problem (2.1), it is sufficient to show that the exact lower bound on the right-hand
side of equality (3.5) is attained.
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4. The existence of an infinitely differentiable solution of the initial problem
The functional @ : L, — R, defined by the formula

®(u) = c‘ljuz(t)dHF(u)

(4.1)
is weakly lower semicontinuous.
In fact, taking account of the fact that z = u in formula (2.11), we obtain z(t) = z(0) + f[o i u(t)dT and
| «nar = 2T+ | ( | u(‘t)d‘t]dt
(0,71 [0, TIN[0, 1] (4.2)

It is easily verified that the functional f : L, - R
fwy = | ( | u(t)dt)dt
[0, TT\[O, 1]

is bounded and linear. Then, f € L5 and the functional fis weakly continuous by definition. The functional (4.2) is weakly continuous as the
sum of a weakly continuous functional and a constant functional. Now, the functional F is weakly continuous as a continuous function of
a weakly continuous functional.

The formula

g() = [u’(ndr=ulz, = ul®

defines a continuous convex functional. This functional (and, consequently, also the first term on the right-hand side of equality (4.1)) is
weakly lower semi continuous (see for example, Ref. 4, Proposition 3, p. 402). Consequently, the functional @ is continuous as the sum of
a weakly continuous functional and a weakly lower semi continuous functional.

We will now consider a closed fall & of radius R >0 with centre at the origin in the space Lj.

bep={ueL,: IIuIILZSR}

For any R >0, a solution of the following problem exists

min  ®(u)
ue Prysd Nby, (4.3)

In fact, we represent the set Pr3.A in the form
Prsd = {ue L,: Iu(r)dt: wi—03} = {ue L,: (u, 1) =wy;—v3}
where (., -) is the symbol of a scalar product in L,[(0, 1)]. Consequently, the set Pr3A is a hyperplane, and it is therefore closed and convex.

We arrive at the conclusion that Pra¥ N brijs 3 closed, bounded, convex set. It is well known (Ref. 5, p. 146, Ref. 6, Theorem 7, p. 178, and
Ref. 7, Corollary 14, p. 457) that a closed convex set is weakly closed. From the reflexiveness of the space L, and the theorem on the weak

compactness (Ref. 4, Theorem 1, p. 397, and Ref. 6, Theorem 2, p. 201), we conclude that the set Prysd M g js weakly compact. Finally, the
required result follows from the strong version of the Weierstrass theorem (Ref. 4, Theorem 3, p. 401, and Ref. 6, Corollary 2, p. 462).
The functional (4.1) satisfies the condition of increasing to infinity

®(u) = +oo when JJu| = oo (4.4)
Actually, by construction F(u) > 0, and, therefore,
) = C'ul®+ Fuyz ¢ ul®

and the required construction is obvious.
We now construct the function

0 ~1
It can be verified that u® € Pr3 A and, consequently, ®(u®) < co. According to condition (4.4) for u®, a number R? >0 is found such that
®(u) > D(u’) when |Ju] =R’

Consequently,

inf ®(u) = min  ®(u)

ue Prysd uePrydnb
: R
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From the existence of a solution of problem (4.3), we now obtain that a solution of the problem

min D(u)
ue Pryd (4.5)

exists.

Suppose u3 is a certain solution of problem (4.5) and (u4, uy) is the corresponding solution of problem (2.12) for z = us. Since, by
construction u® € Pr3 A, (uy, uy) € A(uz), then (uq, u, uz) € A. The existence of a solution of the initial problem (1.2) now follows from
equality (3.5).

Note that the following fact has been incidentally proved: (uj, uy, u3)T is a solution of problem (1.2) in the case and only in the case
when u3 is a solution of problem (4.5) and (uq, u5) is a solution of problem (2.12) for z = us.

If u=(uq, uy, u3)7, u; €Ly is an arbitrary solution of problem (1.1) and @ =(w1, Wy, w3)T, w; € AC is the corresponding trajectory, then
the necessary conditions of Pontryagin’s maximum principle must be satisfied for the process (u, w). Application of the corresponding
formulism leads to the relations (for greater detail, see Ref. 1).

uy (1) = v(1), uy(1) = v,(1), us(r) = Cys(1) (4.6)
O = Koy03+7,, ¥, = Ky,

® = -Koyw;+7Y,, ¥, = -Ky,m;

@3 = Cys, Y3 = (Y0, -Y,0,)K (4.7)

which are satisfied almost everywhere in [0,T].

It follows from Eq. (4.7) that y; € AC. Then, by virtue of relations (4.6), the optimal controls u; can be chosen such that these relations
are satisfied for all t € [0, T]. This can be done since, on passing to the equivalent control functions, the magnitude of the criterion does not
change. Hence, a solution of initial problem (1.1) also exists in the space AC. Since the right-hand sides of Eq. (4.7) are functions which
can be differentiated as many times as desired with respect to each of the arguments w; and +y;, we arrive at a conclusion concerning the
existence of derivatives of any order for the chosen smooth solution, that is, u; € C*.

5. A problem with an unspecified termination time

We will consider a version of initial problem (1.1), assuming that the time T when the process terminates is not specified. In other words,
we study the problem of an optimal control of the form

inf inf | (U3 (t) + u(t) + C b (1)) dr
T>0 (uy,uyuy)e .947[0 7]

Here the set A7 has the same meaning as the set A for a specified termination time T. However, for convenience, the explicit dependence
on the parameter T is indicated.
We now construct the minimizing sequence for the chosen problem and, for each natural k, we put

T, = k; ul(t) = (w3—03)/k when te [0, T,]
We choose the solution of problem (2.2) for z = u® as yk) ) ¢ L,([0, Ti]). Then, from formula (2.12), we have

3 1°72

min j (Ui (0) + u5(2))dt = F(ul?)
(uy,up) € Sﬁrk(u(sk))[o, T,]

Using representation (2.11), we obtain the inequality

9 2
k 1 : k 2 1 i v 1 Y v
Fu) =1, Y -y = k7| ™1 || TVl <k IS (e
i=1 ﬁ)(k) 1)2 e 1)2 )
2 2 2 2

ﬁ;(k) r W
=BT Y
Wy W)

01

B(0) =1, B =Ko}’ B, of = v+ [u’(m)dr, te0,7T)

[0,1]
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where ||-||3 is a Euclidean norm. Since the matrix B(T} ) is orthogonal,
~ (k)
Wi Wy
~ (k) w
2
Wz 5 2
and we arrive at the inequality

Fuy<k'd

W

wy ),
By construction,

(u(lk), u(zk), ugk)) <dg,

for all natural k and therefore

_ 2 2 ~ 2
inf [ @o+rbo+Cliods [ @)+ 6oy + o)) =
(uv Uy, u3) € ‘9@7,‘[0’ Tk] (o, Tk]

= Fuy + ' [ @) dr<i @+ Clwy - v -0
[0, T,]

when k — co. Consequently,

. . 2 2 -1 2

inf inf j @ @) +uy(H+ C us(t)dr = 0

T>0(uy, uy, us3) € .917-[0’ T
The only possible case of free rotation (of uncontrolled angular motion) corresponds to this equality. This manoeuvre is not possible in

the case of all boundary conditions. Hence, if the boundary conditions v and w for the angular velocity are such that the angular velocity

vector accompanying free rotation cannot pass from position v to position w, then a solution of the optimal control problem of rotation

with an unspecified termination time in the class of measurable functions of time does not exist.
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